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Abstract. Hadronic modes in the quark–gluon plasma and their spectral properties are discussed on the
basis of the lattice QCD data analyzed by the maximum entropy method.
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1 Introduction

Properties of the hot hadronic and quark–gluon plasma
may be probed by the in-medium modification of hadronic
excitations as discussed in [1–5] (see also the reviews in [6]).
In particular, it was argued in [2, 3] that soft hadronic
modes survive even in the quark–gluon plasma (QGP) at
temperature (T ) higher than the critical temperature (Tc).
The idea can be best summarized as follows: “. . . there arise
soft modes having a large strength and a narrow width
above the critical temperature, which are analogous to
the fluctuation of the order parameter in a superconductor
above the critical point” (from the abstract of [2]), and “. . .
the plasma exhibits confining features similar to that of the
low-temperature hadronic phase. The confining features
are manifest in the long-range, i.e., long-wavelength, low-
frequency, modes of the plasma” (from the abstract of [3]).

Shown in Fig. 1 is an example of the spectral function
(SPF) of the chiral soft modes (σ and π) at T > Tc obtained
in the Nambu–Jona–Lasinio model [2]. One finds that a low
mass and narrow width peak develops towards Tc, which
is later called the “para-pion” (a soft excitation in the
para-phase of chiral symmetry) [7].

Although many studies on the basis of model Lagran-
gians have been carried out for the hadronic modes at
finite T , the first principle lattice QCD analysis became
possible only recently: A key observation is the use of the
maximum entropy method (MEM) [9,10]. In the following,
we summarize our results on the bound states of heavy
and medium-heavy quarks such as J/Ψ , ηc and φ above
the deconfinement temperature in quenched QCD.

2 QCD spectral functions at finite T

Let us consider the spectral functionA(ω,p) defined as the
imaginary part of the retarded correlation of a hadronic
interpolating field J(x). For the vector mesons, we have
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Fig. 1. The dynamic structure factor S(ω) as a function of
frequency ω in the (σ, π) channel above the critical temperature
of chiral phase transition in the two-flavor Nambu–Jona–Lasinio
model [2]. Quark masses are taken to be zero. A soft and narrow-
width collective mode develops as T approaches to the critical
temperature Tc � 164 MeV

J = c̄γµc for J/ψ, J = s̄γµs for the φ-meson, J = 1
2 (ūγµu−

d̄γµd) for the ρ0-meson, and J = 1
2 (ūγµu+ d̄γµd) for the

ω-meson. Both the real-time (retarded) and imaginary-
time (Matsubara) correlations can be reconstructed from
A(ω,p) through the dispersion relation.

Next we introduce the Matsubara correlation D(τ,p)
in a mixed representation:

D(τ,p) =
∫

d3x D(τ,x)e−ip·x, (1)

where D(τ,x) is an imaginary-time correlation function.
Carrying out the Fourier transform, one arrives at

D(τ,p) =
∫ +∞

−∞

e−τω

1 ∓ e−βω A(ω,p) dω

(0 ≤ τ < β), (2)

Equation (2) is always convergent for τ �= 0 as long as
A(ω → ∞,p) does not grow exponentially.



Tetsuo Hatsuda: In-medium spectral functions from lattice QCD

3 Maximum entropy method

Lattice Monte Carlo simulations provide D(τ,p) on a dis-
crete and finite set of τ and p. From such numerical data,
we need to extract the spectral function A being a con-
tinuous function of ω. This is a typical ill-posed problem,
where the number of data points is much smaller than the
number of degrees of freedom to be reconstructed. The
standard χ2-fitting is obviously inapplicable here, since
many degenerate solutions appear in minimizing χ2.

One way to avoid this problem is to introduce an ansatz
for the spectral function with a few parameters [11]. How-
ever, the spectral structure at finite T is not known in
general. MEM is an approach to circumvent this difficulty
on the basis of the Bayesian probability theory [8]. In MEM,
we do not need to introduce a priori assumptions or pa-
rameterizations of the spectral functions. Nevertheless, for
given lattice data, a unique solution is obtained if it exists.
Furthermore, one can evaluate the statistical significance
of the results.

In MEM, the most probable A given lattice data D is
obtained by maximizing the conditional probability

P [A|D] ∝ eαS−L, (3)

where L is the standard likelihood function and S is the
Shannon–Jaynes entropy [12]:

S =
∫ ∞

0

[
A(ω) −m(ω) −A(ω) log

(
A(ω)
m(ω)

)]
dω. (4)

Here α is a parameter dictating the relative weight of S
andL. The statistical significance (error) of the resultantA
is estimated by the second variation, (δ/δA)2P [A|D]. The
default model m in (4) may be chosen so that the MEM
errors become minimum. The final result is given by the
weighted average over α as

A(ω,p) =
∫
Aα(ω,p) P [α|Dm] dα, (5)

where Aα(ω,p) is obtained by minimizing P [A|D] for a
fixed α. The conditional probability P [α|Dm] can be cal-
culated by using the Bayes theorem and the lattice data.
Thus α is eventually integrated out and does not appear
in the final result.

Afirst successful application ofMEMto the latticeQCD
data at T = 0 has been done for the ground and excited
meson spectra [9]. Also, basic concepts and techniques of
MEM applied to lattice QCD have been summarized in [10].

Shown in Fig. 2 is a first spectral image of the vector
meson at rest (p = 0) extracted from the quenched QCD
data generated on a 203 × 24 lattice with β = 6/g2 = 6.0.
Here a dimensionless spectral function ρ(ω) = A(ω,0)/3ω2

is introduced. The first (second) peak corresponds to the
ground (excited) vector meson. On the other hand, the
highest peak corresponds to a bound state of Wilson dou-
blers as argued in [13]. MEM has been also applied to the
ground and excited baryons in [14]. Shown in Fig. 3 is the
spectral function in the nucleon channel extracted from the
quenched QCD data generated on a 323 × 32 lattice with
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Fig. 2. The dimensionless spectral function ρ(ω) =
A(ω,0)/(3ω2) of the vector meson extracted from a 203 × 24
lattice with β = 6.0 (a � 0.085 fm). The hopping parameter is
taken to be κ = 0.1557. The figure is taken from [9]
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Fig. 3. The dimensionless spectral function ρ(ω) = A(ω,0)/ω5

in the nucleon channel extracted from a 324 lattice with β = 6.0.
The horizontal axis denotes a dimensionless frequency ωa. The
figure is taken from [14]

β = 6.0. The first (second) peak corresponds to the nu-
cleon and the Roper resonance, while the higher two peaks
correspond to the bound states of Wilson doublers [15].

4 Anisotropic lattice

WhenweapplyMEMto the systemat finiteT , there arises a
difficulty originating from the fact that the temporal lattice
size Lτ is restricted as Lτ = 1/T = Nτaτ . Here aτ (Nτ )
is the temporal lattice spacing (the number of temporal
lattice sites). Because of this problem, it becomes more
difficult to keep enough Ndata to obtain reliable SPFs as T
increases. In other words, simulations up to a few times Tc
with Ndata as large as e.g. 30 require a fine lattice in the
temporal direction. This naturally leads us to the use of
the anisotropic lattice where temporal lattice spacing aτ
is smaller than the spatial lattice spacing aσ.

In [16], we have carried out a quenched QCD simula-
tions with β = 7.0 on 323 × Nτ anisotropic lattice with
the renormalized anisotropy ξ = aσ/aτ = 4.0. We take
the naive plaquette gauge action and the standard Wilson
quark action. The fermion anisotropy γF ≡ κτ/κσ with
κσ (κτ ) being the spatial (temporal) hopping parameter
is determined by comparing the temporal and spatial ef-
fective masses of the pseudo-scalar and vector mesons on
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Fig. 4. The dimensionless spectral function ρ(ω) measured on an anisotropic lattice in (a) the J/Ψ channel and in (b) the ηc

channel. See Sect. 4 for lattice parameters. The data are taken from [16]

Table 1. Number of spatial lattice points Nτ and corresponding
temperature divided by Tc. The number of gauge configurations
Ngauge for each T is also given

Nτ 96 54 46 44 42 40 32
T/Tc 0.78 1.38 1.62 1.70 1.78 1.87 2.33
Ngauge 194 150 182 180 180 181 141

a lattice V = 322 × 48 × 128. The lattice spacing is de-
termined from the ρ-meson mass in the chiral limit, which
gives aτ = aσ/4 = 9.75×10−3 fm. The physical lattice size
in the spatial direction reads Lσ = 1.25 fm. The masses
determined on the T = 0 lattice are

mlat
J/ψ � 3.10 GeV, mlat

ηc
� 3.03 GeV, (6)

which should be compared with the experimental values,
3.10 GeV and 2.98 GeV, respectively.

At finite T , the Polyakov-loop susceptibility has a sharp
peak around Nτ = 80 (72), which corresponds to Tc =
253 (281) MeV, consistent with the known Tc in pure gauge
theory, 271±2 MeV. Nτ , the corresponding T/Tc, and the
number of gauge configurations Ngauge are summarized in
Table 1. Gauge configurations are generated by the pseudo
heat-bath and over-relaxation algorithms with a ratio 1 : 4.
Initially, the gauge field is thermalized with 10 000 sweeps
and, then each configuration is separated by 1000 sweeps.

5 Charmonia at T �= 0

Let us discuss some of the interesting features of Fig. 4.
The dimensionless SPFs are defined as ρ(ω) = A(ω,0)/ω2

for ηc and ρ(ω) = A(ω,0)/(3ω2) for J/ψ.
(1) If the deconfined plasma were composed of almost free
quarks and gluons, SPFs would show a smooth structure

with no pronounced peaks above the qq̄ threshold. To the
contrary, we find a sharp peak near the zero-temperature
mass even up to T � 1.62Tc as shown in Fig. 4 [16]. Also we
found that the peak disappears suddenly above T � 1.7Tc.
The existence of the charmonium bound state above Tc
was also observed by Umeda et al. [17] and by Datta et
al. [18].
(2) The width of the first peak in Fig. 4a partly reflects the
unphysical broadening due to the statistics of the lattice
data and partly reflects possible physical broadening at
finite T . At the moment, the former width dominates and
we are not able to draw definite conclusions on the thermal
mass shift and broadening.
(3) The second and third peaks in Fig. 4 may be related
to the fermion doublers originally discussed in [13]. This
must be checked, however, by studying the scaling of the
peak position as 1/aσ.

6 Reliability tests in MEM

Any spectral functions on the lattice obtained from MEM
need to pass several validity tests. This is important because
the lack of accurate lattice data can cause fake peaks and/or
fake smearing as demonstrated by the mock data in [10].
(1) Among others, the first test is the error analysis of the
peaks from the second variation, δ2P [A|D]/δA(ω)δA(ω′).
It has been checked that the sharp peak at T = 1.62Tc
in Fig. 4 is statistically significant. The absence of a peak
at T = 1.70Tc is also statistically significant. The same
features are also observed for ηc.
(2) The second test is for the dependence of the SPFs on
the variation of the number of data point Ndata employed
for the MEM analysis. In particular, one should use the
same Ndata to extract the spectral function for different T .
Otherwise, one cannot know whether the disappearance of
a peak is due to the real thermal effect or from the artifact
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Fig. 5. SPFs for the ss̄-mesons at T/Tc = 1.38. The figure is
taken from [19]

of insufficient number of Ndata. This has been checked
carefully to ensure that the sudden disappearance of the
J/Ψ and ηc peaks is real.
(3) The third test which is not done yet with our data is
a study of the finite volume effect. The spatial volume of
our lattice is about 1.25 fm which is lager than the 1 fm
diameter of J/Ψ at T = 0 but may not be large enough
for the loosely bound charmonium above Tc. The effect of
the finite spatial volume on the SPFs in Fig. 4 is one of the
most important problems to be studied.

7 Strange mesons at T �= 0

Shown in Fig. 5 is the SPFs of the ss̄-mesons in the scalar
(S), pseudo-scalar (PS), vector (V) and axial-vector (AV)
channels [19]. The temperature is taken to be T/Tc = 1.38
and the quark mass is chosen to reproduce the experimental
φ-meson mass at T = 0 approximately.

In this case, one finds that SPFs in all channels have
degenerate peaks around 2.5 GeV. Also, such sharp peaks
disappear at high enough temperature, e.g. at T/Tc = 1.87.

8 Effect of dynamical quarks

The results of the SPFs shown in Figs. 4 and 5 are ob-
tained in the quenched approximation in which dynamical
quarks (both quantum and thermal ones) are neglected.
Namely, they are the results in the gluon plasma and not
in the quark–gluon plasma. Now what would happen if the
dynamical quarks are included?

One can immediately imagine several dynamical effects.
A first one is an effect which tends to destroy the hadronic
resonance above Tc due to its collisions with dynamical
quarks. The second one is an effect which tends to reduce
such collisional effect due to the reduction of the critical
temperature (T quenched

c ∼ 270 MeV → T full
c ∼ 170 MeV).

The ratio of the dissociation rate between
quenched QCD and full QCD around Tc may be roughly

estimated by the number of active degrees of freedom in
the plasma:

nq+g(T full
c )

ng(T
quench
c )

=
16 + 21

16

(
T full

c

T quench
c

)3

� 0.62, (7)

where we have taken Nf = 2. Namely, the net thermal
dissociation rate of the resonance may be weaker in full
QCD than in quenched QCD.

Whether this expectation is valid or not should be stud-
ied by the future full QCD simulations at finite T .

9 Summary and concluding remarks

We have discussed our recent studies on the hadronic modes
above the critical temperature of the QCD phase transition.
In the quenched QCD on the lattice, J/Ψ and ηc are shown
to survive even at T/Tc = 1.62 but they disappear rather
abruptly above T/Tc = 1.7.

If there exist hadronic modes above Tc, what would be
the physics behind them? To unravel the true nature of
such modes, it is important to extract detailed information
such as the spatial correlation function between the quark
and the anti-quark on the lattice [20] and the color-singlet
quark–anti-quark potential on the lattice [21]. Also the
phenomenological studies such as discussed in [22, 23] are
useful to interpret the lattice results.
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